

US Nuclear Codes and Swedish Guideline on the structural design of concrete containments and other concrete structures at NPPs and other nuclear facilities

Ola Jovall

Senior Expert Associate Scanscot Technology Lund, Sweden

jovall@scanscot.com www.scanscot.com

Seminar "Nuclear Construction Codes around the World", 7 September 2017, Cracow/Poland

SCANSCOTTECHNOLOGY

ENGINEERING SERVICES WITHIN THE NUCLEAR INDUSTRY

- Regulations, Codes & Standards and Requirements
- Advanced simulations of static/dynamic accidental events
- Structural design of concrete and steel structures
- Reference projects in Europe, North America and Asia

SOFTWARE PRODUCTS

- BRIGADE Finite Element Analysis software for Bridge Design
- Reseller of ABAQUS (Finite Element Analysis software)

COOPERATION IN POLAND

• BUDSOFT – Realistic Simulation Solutions, Poznań, Poland

OLA JOVALL

US CODES

- Code Committee Voting Member: ACI 349 Other Safety-Related Nuclear Concrete Structures
- Code Committee Voting Member: ASME Sect III Div 2 Code for Concrete Containments
- Member of several Task Groups, Working Groups etc. regarding:
 - Structural design
 - Harmonization of ACI 349 and ASME Sect III Div 2
 - Intermediate and long-term development of ASME Sect III Div 2
 - Containment design for Design Extension Conditions & Design Extension External Events (DEC & DEEE)

SWEDISH DESIGN GUIDE DNB

• Editor and Main Author of the Swedish Radiation Safety Authority report 2017:07 - **Design Guide for Nuclear Civil Structures (DNB)**

CONTENT

SWEDISH DESIGN GUIDE DNB

- Background / Content / Status
- Connections with regulations
- Connections with Codes & Standards

US CODES

- Point out and discuss applicable documents
- Design Extension Conditions (DEC) and Design Extension External Events (DEEE)
- Code comparison examples

NUCLEAR POWER PLANTS IN SWEDEN

DESIGN AND CONSTRUCTION OF COMMERCIAL NUCLEAR POWER PLANTS

- Carried out during ~20 years
- Placing of first order 1965 (Oskarshamn 1)
- The latest plant connected to the grid 1985 (Oskarshamn Unit 3)

ALL-IN-ALL 12 COMMERCIAL UNITS WHERE CONSTRUCTED

- 9 BWRs (Asea-Atom, three different generations)
- 3 PWRs (Westinghouse)
- Situated at four different site

NUCLEAR POWER PLANTS IN SWEDEN

- Planned continued operation
- Decommission 2019 2020
- Decommissioned 1999, 2005, 2015, 2017
- New build

12 commercial NPP's all-in-all8 in operation2 to be shut down in the near futureNo new build projects

SWEDISH DESIGN GUIDE FOR NUCLEAR CIVIL STRUCTURES, DNB

BACKGROUND

- The original design of the Swedish units has been based on different set of design rules
- The previous Swedish design guide "Design Rules for Buildings at NPPs (DRB)" where developed to have a common consistent set of design rules for future work
- Licensee initative
- Scanscot Technology assigned to write the report
- Issued 1998, updated 2001

SWEDISH DESIGN GUIDE FOR NUCLEAR CIVIL STRUCTURES, DNB

BACKGROUND

- The original design of the Swedish units has been based on different set of design rules
- The previous Swedish design <u>guide</u> "Design Rules for Buildings at NPPs (DRB)" where developed to have a common consistent set of design rules for future work
- Licensee initative
- Scanscot Technology assigned to write the report
- Issued 1998, updated 2001
- Since based on the at that time Swedish Building Codes in force, when Eurocodes became mandatory it emerged the need for a <u>new design guide</u> <u>complying with Eurocodes -> DNB</u>

ESTABLISHMENT OF THE DESIGN GUIDE (DNB)

STEERING COMMITTE

- The Swedish Radiation Safety Authority (SSM)
- The Swedish Licensee's

PROJECT TEAM

- Scanscot Technology Author of the report
- Prof. S. Thelandersson, Lund University, Sweden Reviewer

EVALUATION OF THE REPORT

- Selected stakeholders Review and comments
- Steering Committee Review and comments;
 - Final acceptance of the report

CONTENT OF THE DESIGN GUIDE (DNB)

FIRST & SECOND EDITION (January 2014; June 2015)

- General requirements and design provisions
- Loads and load combinations
- Design of concrete containments and other structures
- Seismic design

THIRD EDITION (February 2017)

- Fire design
- Impactive & impulsive loading (explosions, missiles, APC)

FOURTH EDITION (February 2019), extend the sections on

- Design Extension Conditions/External Events (DEC/DEEE)
- Classification of buildings
- Materials

CONTENT OF THE DESIGN GUIDE (DNB)

FIRST & SECOND EDITION (January 2014; June 2015)

- General requirements and design provisions
- Loads and load combinations
- Design of concrete containments and other structures
- Seismic design

THIRD EDITION (February 2017)

- Fire design
- Impactive and impulsive loading

FOURTH EDITION (February 2019), extend the sections on

- Design Extension Conditions/External Events (DEC/DEEE)
- Classification of buildings
- Materials

CONTENT OF THE DESIGN GUIDE (DNB)

FIRST & SECOND EDITION (January 2014; June 2015)

- General requirements and design provisions
- Loads and load combinations
- Design of concrete containments and other structures
- Seismic design

THIRD EDITION (February 2017)

- Fire design
- Impactive and impulsive loading

FOURTH EDITION (February 2019), extend the sections on

- Design Extension Conditions/External Events (DEC/DEEE)
- Classification of buildings
- Materials

PURPOSE OF THE DESIGN GUIDE (DNB)

LICENSEE'S, SUPPLIERS etc.

- Non-mandatory guideline
- Consistent set of design rules
- Assist during verification of existing structures, and during the design of new structures

SWEDISH REGULATORY BODY (SSM)

- "DNB to be used by SSM during safety assessments of structures"
- "DNB could contribute to specify demands to be enforced for nuclear facilities"
- Ongoing development of New Regulations and corresponding General Advice Documents

- 1) Swedish National Annexes for Buildings: "Boverket, BFS 2011:10 EKS 8"
- 2) ASCE 4-98 Seismic Analysis of Safety-Related Nuclear Structures and Commentary
- 3) ASME Sect III Div 2 Code for Concrete Containments

- 1) Swedish National Annexes for Buildings: "Boverket, BFS 2011:10 EKS 8"
- 2) ASCE 4-98 Seismic Analysis of Safety-Related Nuclear Structures and Commentary
- 3) ASME Sect III Div 2 Code for Concrete Containments

- 1) Swedish National Annexes for Buildings: "Boverket, BFS 2011:10 EKS 8"
- 2) ASCE 4-98 Seismic Analysis of Safety-Related Nuclear Structures and Commentary
- 3) ASME Sect III Div 2 Code for Concrete Containments

1) Swedish National Annexes for Buildings: "Boverket, BFS 2011:10 – EKS 8"

2) ASCE 4-98 Seismic Analysis of Safety-Related Nuclear Structures and Commentary

3) ASME Sect III Div 2 Code for Concrete Containments

EUROCODES

- The basic code adopted
- Applied together with the Swedish National Annexes

ASME SECT III DIV 2 CODE FOR CONCRETE CONTAINMENTS

- Adopted
- To comply with both Eurocodes and ASME Sect III Div 2

ACI 349 CODE REQUIREMENTS FOR NUCLEAR SAFETY-RELATED CONCRETE STRUCTURES

- Comparisons has been made between this code and DNB
- ACI 349 design approaches adopted if found appropriate (e.g. limitation of redistribution of section forces), but not included specific numerical values
- DNB design results compared with ACI 349 design results (as well as other codes)

DNB CONNECTIONS TO OTHER CODES & STANDARDS

ASCE 4-98 SEISMIC ANALYSIS OF SAFETY-RELATED NUCLEAR STRUCTURES

- Adopted
- Replaces Eurocode EN-1998

IAEA NS-G-1.10 GENERAL ACCEPTANCE CRITERIA FOR STRUCTURAL INTEGRITY AND LEAK-TIGHTNESS OF THE CONTAINMENT

• Next slides!

IAEA SAFETY REQUIREMENTS

GENERAL

- IAEA specifies general safety requirements for Nuclear Power Plants.
- These requirements are normally adopted by National Safety Radiation Authorities.

IAEA NS-G-1.10 ON CONTAINMENTS

• IAEA specifies in NS-G-1.10 general acceptance criteria for the behavior of the reactor containment related to structural integrity and leak-tightness. These general acceptance criteria are in agreement with the overall safety requirements.

CONNECTION TO DNB

• DNB complies with the IAEA NS-G-1.10 general acceptance criteria for the reactor containment.

IAEA Safety requirements

Eurocodes ASME Sect III Div 2

IAEA NS-G-1.10 GENERAL ACCEPTANCE CRITERIA FOR CONTAINMENTS

STRUCTURAL INTEGRITY

- Level I: Elastic range
- Level II: Small permanent deformations
- Level III: Large permanent deformations

LEAK-TIGHTNESS

- Level I: Leak-tight structure
- Level II: Limited increase of leak rate
- Level III: Large or very large increase of leak rate

ACCEPTANCE CRITERIA SPECIFIED FOR MAJOR LOAD COMBINATIONS

• Discrepancy: In Sweden we do not combine Design Basis Earthquake (DBE) with Design Basis Accident (DBA)

7.			H1, H2	H3, H4	H5	;	
IAE/	EVENT CLASS		NormalUnanticipatedoperation andevents andanticipated eventsimprobable events	Unanticipated	Highly improb	Highly improbable evenst	
SSM / safety				Design extension conditions (DEC)	Design extension external events (DEEE)		
ceptance eria	STRUCTUR/ INTEGRITY	AL	Level I : Elastic range	Level II: Small permanent deformations ¹⁾	Level III: Large permanent deformations ²⁾	DEEE that may lead to DEC	
IAEA acc critt	LEAK-TIGHTNESS		Level I : Leak-tight structure	Level I : Leak-tight structure	Level II: Limited increase of leak rate ²⁾	\leftarrow	
pu	Design of concrete structures	Code	Eurocodes and A	SME Sect III Div 2	Eurocodes		
ialysis a se		Structural analysis	Essentially elastic	structural analysis	Plastic analysis		
odes, structural an accepted respon		Response (cross section)	Elastic behavior	Partial yield	General yield		
	Design of	Code	ASME Se	ct III Div 2	Extrapolated demands based on ASME III 2		
AB CC	steel liner	Liner	L	imitation of allowable st	train		
D		Concrete	Limi	Limitation of allowable crack width			

1) Level II acceptable (instead of the more restrictive level I) due to a load factor of 1.5 for the LOCA overpressure.

П	م			H1, H2	H3, H4	H5	
	IAE/	EVENT CLASS		Normal	Unanticipated	Highly improbable evenst	
ì	SSM / safety			operation and anticipated events	events and improbable events	Design extension conditions (DEC)	Design extension external events (DEEE)
	ceptance eria	STRUCTUR/ INTEGRITY	AL	Level I : Elastic range	Level II: Small permanent deformations ¹⁾	Level III: Large permanent deformations ²⁾	DEEE that may lead to DEC
	IAEA acc crit	LEAK-TIGHTNESS		Level I : Leak-tight structure	Level I : Leak-tight structure	Level II: Limited increase of leak rate ²⁾	\leftarrow
	pu		Code	Eurocodes and A	SME Sect III Div 2	Eurocodes	
	alysis a se	Str Design of eStr and andeconcreteeconcreteostructuresRe (cr sed	Structural analysis	Essentially elastic	structural analysis	Plastic analysis	
des, structural an	ructural an ed respon		Response (cross section)	Elastic behavior	Partial yield	General yield	
	odes, sti accept	(Design of	Code	ASME See	ct III Div 2	Extrapolated demands based on ASME III 2	
	AB CC	steel liner	Liner	Li	mitation of allowable st	rain	
	Ď		Concrete	Limi	tation of allowable crack	< width	

1) Level II acceptable (instead of the more restrictive level I) due to a load factor of 1.5 for the LOCA overpressure.

	<i>.</i>			H1, H2	H3, H4	H5	
	IAE/			Normal	Unanticipated	Highly improb	able evenst
	SSM / safety	EVENT CLAS	SS	operation and anticipated events	events and improbable events	Design extension conditions (DEC)	Design extension external events (DEEE)
	ceptance eria	STRUCTUR/ INTEGRITY	AL	Level I: Elastic range	Level II: Small permanent deformations ¹⁾	Level III: Large permanent deformations ²⁾	DEEE that may lead to DEC
	IAEA acc crit	LEAK-TIGHTNESS Level I: Leak-tight structure Level I: Leak-tight structure Level I: Leak-tight structure	Level II: Limited increase of leak rate ²⁾				
	P	Co	Code	Eurocodes and A	SME Sect III Div 2	Eurocodes	
	alysis a se	Design of concrete	Structural analysis	Essentially elastic	structural analysis	Plastic analysis	
	ructural an ed respon	structures	Response (cross section)	Elastic behavior	Partial yield	General yield	
	odes, sti accept	Design of	Code	ASME Se	ct III Div 2	Extrapolated demands based on ASME III 2	
	NB C	steel liner	Liner	Li	mitation of allowable st	rain	
	D		Concrete	Limi	tation of allowable crac	k width	

1) Level II acceptable (instead of the more restrictive level I) due to a load factor of 1.5 for the LOCA overpressure.

	. .			H1, H2	H3, H4	H5		
	IAE/			Normal	Unanticipated	Highly improb	ble evenst	
	SSM / safety	EVENT CLASS		operation and anticipated events	events and improbable events	Design extension conditions (DEC)	Design extension external events (DEEE)	
	eptance eria	STRUCTUR/ INTEGRITY	AL	Level I : Elastic range	Level II: Small permanent deformations ¹⁾	Level III: Large permanent deformations ²⁾	DEEE that may lead to DEC	
	IAEA acc crite	LEAK-TIGH	INESS	Level I : Leak-tight structure	Level I : Leak-tight structure	Level II: Limited increase of leak rate ²⁾	⇐	
	pu		Code	Eurocodes and A	SME Sect III Div 2	Eurocodes		
	ıalysis a se	Design of concrete	Structural analysis	Essentially elastic	structural analysis	Plastic analysis		
	ructural an ed respon	structures	Response (cross section)	Elastic behavior	Partial yield	General yield		
	odes, sti accept	Design of	Code	ASME Se	ct III Div 2	Extrapolated demands based on ASME III 2		
	NB CC	steel liner	Liner	L	imitation of allowable st	rain		
	D		Concrete	Limi	tation of allowable cracl	k width		

DESIGN GUIDE FOR NUCLEAR CIVIL STRUCTURES (DNB)

- Could be downloaded for free at the Swedish Radiation Safety Authority (SSM) webpage
- The latest edition SSM 2017:07 in Swedish only
- The previous edition SSM 2015:24 is available in an English translation SSM 2015:25

http://www.stralsakerhetsmyndigheten.se/Global/ Publikationer/Rapport/Avfall-transport-fysisktskydd/2015/SSM_Rapport_2015_25_webb_1.pdf

US CODES - OVERVIEW

American Concrete Institute

ACI

www.concrete.org

American Society of Mechanical Engineers

ASME

www.asme.org

U.S. Nuclear Regulatory Commission

USNRC

www.nrc.gov

US CODES - OVERVIEW

ACI 318 Building Code Requirements for Structural Concrete and Commentary

- The basic Code valid for conventional buildings

ACI 349 Code Requirements for Nuclear Safety-Related Concrete Structures & Commentary

- This Code is based on ACI 318

ASME Sect III Div 2 / ACI 359 Joint Code for Concrete Containments

- This Code is based on ACI 349

	ACI 349, other nuclear buildings	ASME Sect III Div 2 / ACI 359, containments
Type of Code	Dependent code (previously stand-alone)	Stand-alone code
	"Same as ACI 318"	All paragraphs included
	Only stating topics when deviating	

	ACI 349, other nuclear buildings	ASME Sect III Div 2 / ACI 359, containments
Type of Code	Dependent code (previously stand-alone) "Same as ACI 318" Only stating topics when deviating	Stand-alone code All paragraphs included
Connection to other code	ACI 318 By reference Normally lag one edition	ACI 349 By incorporating similar design paragraphs Update to follow ACI 349 updates "ad-hoc" Sometimes rather large differences

	ACI 349, other nuclear buildings	ASME Sect III Div 2 / ACI 359, containments
Type of Code	Dependent code (previously stand-alone) "Same as ACI 318" Only stating topics when deviating	Stand-alone code All paragraphs included
Connection to other code	ACI 318 By reference Normally lag one edition	ACI 349 By incorporating similar design paragraphs Update to follow ACI 349 updates "ad-hoc" Sometimes rather large differences
Design philosophie	Load and resistance factor design (LRFD) code Load factors - reflect the probability Flexure and tension – stress/strain allowable Shear – strength equation	Combination of ACI LRFD and ASME allowable stress design (ASD) Load factors - reflect the severity, matching the safety factor principle of an ASD code Flexure and tension – stress/strain allowable Shear – strength equation

	ACI 349, other nuclear buildings	ASME Sect III Div 2 / ACI 359, containments
Content (design)	General requirements	
	Mate	erials
	Loads and load combinations	
	Structural analysis procedures	
	Structural design resistance / allowables	
	Serviceability requirements	
	Durability requirements	
	Detailing	
	1	

	ACI 349, other nuclear buildings	ASME Sect III Div 2 / ACI 359, containments	
Content (design)	General requirements		
	Mate	erials	
	Loads and load	d combinations	
	Structural anal	ysis procedures	
	Structural design resistance / allowables		
	Serviceability requirements		
	Durability requirements		
Detailing		ailing	
Specific topics	Earthquake resistant design		
(compared with the connected code)	Impactive & impulsive loading	Leak-tightness: Steel liner design	
	Anchoring-to-concrete	Cylindrical shell design	
	Thermal considerations		

STANDARDS AT DIFFERENT LEVELS

Level	Description	
1	Level 1 comprises Standards for structural safety and actions on structures; in particular, basic reliability and durability requirements are established.	Design
2	Level 2 consists of Standards for the design and detailing of structures.	Design
3	Level 3 gives information on structural materials, products and the execution of structures.	Materials
4	Level 4 consists of Standards for the testing of materials and products.	Testing
5	Level 5 comprises Standards for protection and repair of existing structures	Repair

EUROCODES AS DESIGN CODE AND OTHER CEN STANDARDS

Level	Description	Conventional buildings
1	Level 1 comprises Standards for structural safety and actions on structures; in particular, basic reliability and durability requirements are established.	CEN Standards (i.e. Eurocodes)
2	Level 2 consists of Standards for the design and detailing of structures.	CEN Standards (i.e. Eurocodes)
3	Level 3 gives information on structural materials, products and the execution of structures.	CEN Standards
4	Level 4 consists of Standards for the testing of materials and products.	CEN Standars
5	Level 5 comprises Standards for protection and repair of existing structures	CEN Standards

APPLYING US DESIGN CODES

Level	Description	Nuclear power plants
1	Level 1 comprises Standards for structural safety and actions on structures; in particular, basic reliability and durability requirements are established.	Design: ASME and ACI Codes
2	Level 2 consists of Standards for the design and detailing of structures.	Design: ASME and ACI Codes
3	Level 3 gives information on structural materials, products and the execution of structures.	Materials: ??? CEN Standards ???
4	Level 4 consists of Standards for the testing of materials and products.	Testing: ??? CEN Standards ???
5	Level 5 comprises Standards for protection and repair of existing structures	

US CODES – WHICH EDITION TO APPLY?

THE LATEST EDITION

• This ensure that the latest knowledge and findings has been incorporated

THE EDITION ADOPTED OR ENDORSED BY USNRC

- This is not the latest edition, USNRC lag behind
- However, the benefit is that the edition is checked and accepted by a major Regulatory Body, and that
- the Code could be used together with USNRC documents regulating the design of nuclear structures.

US CODES – WHICH EDITION TO APPLY?

THE LATEST EDITION

• This ensure that the latest knowledge and findings has been incorporated

THE EDITION ADOPTED OR ENDORSED BY USNRC

- This is not the latest edition, USNRC lag behind
- However, the benefit is that the edition is checked and accepted by a major Regulatory Body, and that
- the Code could be used together with USNRC documents regulating the design of nuclear structures.

HERE WE CHOSE TO GO WITH USNRC

• This since the USNRC documents and the US Codes combo constitute a complete, consistent and comprehensive package

USNRC – DOCUMENT STRUCTURE

REGULATORY REQUIREMENTS

• Code of federal regulations (CFR)

REGULATORY GUIDANCE DOCUMENTS

- Regulatory guides
- Interim staff guidance
- Standard review plans
- Office instructions
- Review standards

USNRC – DOCUMENT STRUCTURE

REGULATORY REQUIREMENTS

• Code of federal regulations (CFR)

REGULATORY GUIDANCE DOCUMENTS

- Regulatory guides (RG)
- Interim staff guidance
- Standard review plans (SRP)
- Office instructions
- Review standards

COLLECTION OF US CODES AND USNRC GUIDANCE DOCUMENTS

CONCRETE CONTAINMENTS – ASME + USNRC

- ASME Section III, Division 2, Subsection CC Code for Concrete Reactor Vessels and Containments
- ASME Section XI, Subsection IWL Requirements for Class CC Concrete Components of Light-Water Cooled Plants
- ASME Section XI, Subsection IWE Requirements for Class MC and Metallic Liners of Class CC Concrete Components of Light-Water Cooled Power Plants
- Standard Review Plan (SRP) 3.8.1 Concrete Containments
- Regulatory Guide (RG) 1.136 Design Limits, Loading Combinations, Materials, Construction, and Testing of Concrete Containments

CONCRETE CONTAINMENTS

• RG 1.18

Structural Acceptance Test for Concrete Primary Reactor Containment

• RG 1.35

Inservice Inspection of Ungrouted Tendons in Prestressed Concrete Containment Structures

• RG 1.35.1

Determining Prestressing Forces for Inspection of Prestressed Concrete Containments

• RG 1.90,

Inservice Inspection of Prestressed Concrete Containment Structures with Grouted Tendons.

• RG 1.107

Qualifications for Cement Grouting for Prestressing Tendons in Containment Structures

CONCRETE CONTAINMENT CODE

ASME CODE CASES

If urgent need

- for alternative rules concerning issues not covered by existing Code, or
- for an early implementation of an approved Code revision ASME may issue a Code Case:
- Code Cases: Nuclear Components (Sect III Div 2: 19)

USNRC APPROVAL

• RG 1.84

Design, Fabrication, and Materials Code Case Acceptability, ASME Section III

• RG 1.193 ASME Code Cases Not Approved for Use AN INTERNATIONAL CODE

2017 ASME Boiler & Pressure Vessel Code

CODE CASES: NUCLEAR COMPONENTS

Supplement 1

CONCRETE INTERNAL STRUCTURES OF CONTAINMENTS – ACI + ASME + USNRC

• ACI 349

Code Requirements for Nuclear Safety-Related Concrete Structures

- ASME Section III, Division 2, Subsection CC, Code for Concrete Reactor Vessels and Containments (if important pressure boundaries between compartments)
- SRP 3.8.3 Concrete and Steel Internal Structures of Steel or Concrete Containments

• RG 1.142

Safety-Related Concrete Structures for Nuclear Power Plants (Other Than Reactor Vessels and Containments)

• RG 1.199

Anchoring Components and Structural Supports in Concrete

OTHER SEISMIC CATEGORY I STRUCTURES - ACI + USNRC

- ACI 349 Code Requirements for Nuclear Safety-Related Concrete Structures
- SRP 3.8.4 Other Seismic Category I Structures
- RG 1.142
 Safety-Related Concrete Structures for Nuclear Power Plants (Other Than Reactor Vessels and Containments)

• RG 1.199 Anchoring Components and Structural Supports in Concrete

FOUNDATIONS – ACI + USNRC

• ACI 349

Code Requirements for Nuclear Safety-Related Concrete Structures

• SRP 3.8.5 Foundations

• RG 1.142

Safety-Related Concrete Structures for Nuclear Power Plants (Other Than Reactor Vessels and Containments)

• RG 1.199

Anchoring Components and Structural Supports in Concrete

DESIGN EXTENSION CONDITIONS AND DESIGN EXTENSION EXTERNAL EVENTS

NEW NUCLEAR POWER PLANTS

- DEC and DEEE could governing the dimensioning of the concrete structures
- DEC
 - Severe accidents (large pressure levels inside the containment)
- DEEE
 - Severe earthquake
 - Airplane crash (large commercial airliner)

US CODES AND REGULATORY GUIDANCE

- The terms DEC and DEEE not introduced
- Beyond design basis accidents BDBA are discussed

DESIGN EXTENSION CONDITIONS AND DESIGN EXTENSION EXTERNAL EVENTS

BDBA IN ASME SECT III DIV 2 - CONTAINMENTS

- Nothing
- A <u>Design</u> Code, hence excluding beyond design accidents

BDBA IN ACI 349 – OTHER NUCLEAR STRUCTURES

- Not in the main body of the code
- However, the Commentary discuss a BDBA earthquake
- An essentially elastic design for the Design Basis Earthquake (DBE) together with a ductile detailing ensure enough margins for BDBA
- Limitation of concrete compression strains for DBE ensure enough margins for BDBA

DESIGN EXTENSION CONDITIONS AND DESIGN EXTENSION EXTERNAL EVENTS

USNRC GUIDANCE ON BDBA

• RG 1.216

Containment Structural Integrity Evaluation for Internal Pressure Loadings Above Design-Basis Pressure

• RG 1.217

Guidance for the Assessment of Beyond-Design-Basis Aircraft Impacts

COMPARISONS OF CODES & STANDARDS, EXAMPLE NO.1

Comparison between DNB, Eurocodes and ASME Sect III Div 2/ACI 349

- Reactor containment and reactor building
- Typical structural elements compared (i.e. cylindrical wall; slab; beam)
- Capacities compared are the load levels the structure can resist for different failure modes (tension; bending; shear)
- The capacities are normalized to the DNB capacity (i.e. the DNB capacity is always 1)
- Yellow color -> most conservative code

Capacities compared are the load levels the structure can resist for different failure modes The capacities are normalized to the DNB capacity (i.e. the DNB capacity is always 1) Yellow color -> most conservative code

Reactor containment cylindrical wall	DNB	Eurocodes	ASME III 2
Prestressed			
Maximum membrane capacity	1	1.06	0.94
Bending moment – ULS	1	1.07	0.93
Shear - ULS	1	1.40	1.00
Not prestressed			
Maximum membrane capacity	1	1.11	0.84
Bending moment – ULS	1	1.16	0.84
Shear - ULS	1	1.08	1.00

Capacities compared are the load levels the structure can resist for different failure modes The capacities are normalized to the DNB capacity (i.e. the DNB capacity is always 1) Yellow color -> most conservative code

FI

Reactor building	DNB	Eurocodes	ACI 349
Slab			
Bending – ULS	1	1	1.10
Bending – ALS	1	1	1.12
Shear - ULS	1	1	1.22
Shear - ALS	1	1	1.39
Beam			
Bending – ULS	1	1	1.20
Bending – ALS	1	1	1.36
Shear - ULS	1	1	0.75
Shear - ALS	1	1	0.84

COMPARISONS OF CODES & STANDARDS, EXAMPLE NO. 2

Comparison between Eurocodes and ASME Sect III Div 2

- Reactor containment cylindrical wall
- Load combinations on the vertical axis
- Different situations on the horizontal axis
- Red color = Eurocodes governs (lowest capacity)
- Green color = ASME governs (lowest capacity)
- Faded colors = Close cut

Load	Case	1-1	2-1	3-1	4-1	1-2	2-2	3-2	4-2
comb.	Reinforcement	No	No	No	No	Yes	Yes	Yes	Yes
	Shear force kN	N/A	N/A	N/A	N/A	4000	4000	4000	4000
	Bend. moment kNm	0	0	4150	4150	0	0	4150	4150
	Compr. Stress MPa	0.5	5	0.5	5	0.5	5	0.5	5
	Category Table	3.10	3.12	3.14	3.16	3.11	3.13	3.15	3.17
Test	Service ULS	EC	~ (EC)	EC	~ (ASME)	EC	EC	EC	EC
	Factored ULS	~ (EC)	EC	EC	~ (EC)	EC	EC	EC	EC
Normal Constr.	Serv. 50% ULS	EC	EC	EC	ASME	ASME	EC	ASME	~ (EC)
	Serv. 67% ULS	EC	EC	EC	EC	EC	EC	EC	EC
	Serv. 75% ULS	EC	EC	EC	~ (ASME)	EC	EC	EC	EC
S.E.	Fact. 1.5 ULS	EC	EC	EC	EC	EC	EC	EC	EC
	Fact. 1.3 ULS	EC	EC	EC	EC	EC	EC	EC	EC
	Fact. 1.0 ULS	ASME	ASME	ASME	ASME	EC	EC	EC	EC
Others	Fact. 1.5 ULS, acc	ASME	ASME	~ (ASME)	ASME	ASME	~ (EC)	ASME	ASME
	Fact. 1.25 ULS, acc	~ (EC)	~ (EC)	EC	ASME	ASME	EC	ASME	EC
	Fact. 1.0 ULS, acc	EC	~ (EC)	EC	~ (ASME)	EC	EC	EC	EC

Radial shear (88 comparisons)

- Load combinations on the vertical axis
- Different situations on the horizontal axis
- **Red color** = Eurocodes governs

• Faded colors = Close cut

Load	Case	1	2	3	All
comb.	Comp. stress hoop	0	0	5	All
	Comp. stress mer.	0	5	5	All
	Shear reinf.	No	No	No	Yes
	Category Table	3.36	3.37	3.38	3.39
Test	Service ULS	EC	ASME	EC	EC
	Factored ULS	EC	ASME	EC	EC
Normal Constr.	Serv. 50% ULS	EC	ASME	~ (EC)	ASME
	Serv. 67% ULS	EC	ASME	EC	EC
	Serv. 75% ULS	EC	ASME	EC	EC
S.E.	Fact. 1.5 ULS	EC	ASME	EC	EC
	Fact. 1.3 ULS	EC	EC	EC	EC
	Fact. 1.0 ULS	EC	ASME	ASME	EC
Others	Fact. 1.5 ULS, acc	EC	ASME	ASME	ASME
	Fact. 1.25 ULS, acc	EC	ASME	EC	ASME
	Fact. 1.0 ULS, acc	EC	ASME	EC	ASME

Tangential shear (44 comparisons)

- Load combinations on the vertical axis
- Different situations on the horizontal axis
- **Red color** = Eurocodes governs

• Faded colors = Close cut

Load	Steel part	Reinforcement	Tendons
comb.	Category Table	3.43	3.44
Test	Service ULS	EC	EC
	Factored ULS	EC	ASME
Normal Constr.	Serv. 50% ULS	ASME	EC
	Serv. 67% ULS	EC	
	Serv. 75% ULS	EC	
S.E.	Fact. 1.5 ULS	EC	~(ASME)
	Fact. 1.3 ULS	EC	EC
	Fact. 1.0 ULS	EC	EC
Others	Fact. 1.5 ULS, acc	ASME	ASME
	Fact. 1.25 ULS, acc	ASME	ASME
	Fact. 1.0 ULS, acc	ASME	ASME

Bending moment and tension capacity (22 comparisons)

- Load combinations on the vertical axis
- Different situations on the horizontal axis
- **Red color** = Eurocodes governs
- **Green color** = ASME III 2 governs
- Faded colors = Close cut

COMPARISONS OF CODES & STANDARDS

Conclusion

- Unfortunately, it is hard to say that one of the codes envelope another!
- Hence, the decision in DNB to demand compliance with both Eurocodes and ASME Sect III Div 2

THANK YOU FOR YOUR ATTENTION!

